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ABSTRACT

This research develops methodological contributions to M-quantile (MQ) regression models in
the context of small area estimation, with particular emphasis on inference and diagnostics.
The authors establish the consistency of the area-specific MQ coefficients, which play a role
analogous to random effects in mixed models by capturing between-area variability. They also
address the analysis of the residuals, providing an approximation to their distribution and
drawing connections with mixed models. Furthermore, they estimate the distribution of op-
timal robustness parameters for bias correction via bootstrap, which enables the construction
of a statistical test for the identification of atypical areas. Through simulation studies, the
new methodology is shown to be effective in detecting outliers and assessing model fit. An
application to Spanish income data demonstrates the practical utility of the contributions.

Keywords: Consistent estimator; residual analysis; optimal bias correction; outlier detection;
robustness parameter; bootstrap inference.

1. INTRODUCTION

National statistical offices design surveys to achieve cost-effective and accurate estimates at a given
level of aggregation. However, producing disaggregated statistics is essential for informed decision-making
(Rao and Molina, 2015), which often requires additional information or more sophisticated prediction tools.
Small area estimation (SAE) addresses these challenges when domain-level sample sizes are too small for
reliable direct estimation (Morales et al., 2021). SAE typically relies on linear and generalized linear mixed
models (LMM/GLMM), using either unit-level or area-level data, to borrow strength across domains via
auxiliary information and some structural assumptions. Unit-level models –our focus in this research–
commonly use empirical best linear unbiased predictors (EBLUP) or empirical best predictors (EBP)
derived under restrictive parametric assumptions, where normally distributed random effects account for
between-area variability. Numerous recent contributions to unit-level mixed models have been made, many
of which are reviewed in Bugallo et al. (2024).

In contrast, M-quantile (MQ) regression (Breckling and Chambers, 1988; Chambers and Tzavidis, 2006)
offers a robust alternative, avoiding strong distributional assumptions while delivering reliable predictions.
MQ-based SAE has been successfully applied to predict indicators such as poverty rates and economic
variables (e.g., Salvati et al., 2012; Marchetti et al., 2018). Despite their advantages, robust methods
can lead to biased predictions, particularly when the robustness mechanism is not optimally calibrated.
Bias-corrected MQ predictors incorporate a second influence function governed by a robustness parameter,
whose optimal, data-driven selection was recently addressed by Bugallo et al. (2025).

In our ongoing unpublished manuscript (Bugallo and Morales, 2025), we build on the work of Bugallo
et al. (2025) by examining the distribution of optimal robustness parameters and introducing a new test
for detecting atypical areas. In addition, we propose a novel approximation to the distribution of the MQ
residuals and establish the consistency of the area-specific MQ coefficients, which play a role analogous to
random effects in mixed models. Our approach enables formal outlier detection in MQ models, which has
been relatively unexplored. Simulations and an application to income data from the 2022 Spanish Living
Conditions Survey (SLCS) illustrate the effectiveness of the proposed methodology.

The remainder of the document is structured as follows. Section 2 reviews the MQ models for small
area linear prediction. Section 3 establishes consistency results. Section 4 deals with the residual analysis
and the bootstrap inference. Section 5 introduces a new test for area-level outlier detection. Sections 6
and 7 present simulation and empirical results related to differences in average income between provinces
in Andalućıa (Spain), using data from the 2022 SLCS. Section 8 concludes with some final remarks.



2. M-QUANTILE MODELS FOR SMALL AREA LINEAR PREDICTION

Let U be a finite population of size N , hierarchically partitioned into D non-overlapping small areas
Ud, each of size Nd, for d = 1, . . . , D. The samples drawn from the population and from each small
area are denoted by s and sd, with respective sample sizes n and nd. It is assumed that the indexes in
Ud are ordered such that the first nd units of each domain correspond to the sample units in sd, and the
remaining Nd−nd units correspond to the non-sampled units in rd = Ud\sd. The vector of p ≥ 1 unit-level
auxiliary variables xdj is assumed to be known for all population units, whereas the target variables ydj
are absolutely continuous and observed only for the units included in the sample subsets.

For 0 < q < 1, the two-level MQ models are specified as

ydj = x′djβψ(q) + eψ,dj(q), d = 1, . . . , D, j = 1, . . . , Nd, (1)

where the MQ function (Breckling and Chambers, 1988) of order q for ydj , given xdj , is

Qq(ydj ;σq, ψ | xdj) = x′djβψ(q) (2)

and βψ(q) is the vector of regression coefficients that depend on the quantile level q. The model errors
are eψ,dj(q) = ydj − x′djβψ(q) and assumed to be independent. Conditioned to xdj , they satisfy that

Qq(eψ,dj(q);σq, ψ|xdj) = 0 and the homoscedasticity assumption σq = var1/2(eψ,dj(q)) is required.

The iterative re-weighted least squares (IRLS) algorithm is used to fit the two-level MQ models (Bianchi
and Salvati, 2015) and guarantees convergence to a unique solution for a continuous monotone influence
function ψ. At the output, we obtain not only an estimate of βψ(q) and σq, but also a diagonal matrix

with the final weights Wψ(q) = diag
1≤d≤D

(
diag

1≤j≤nd
(wψdj(q))

)
, where:

β̂ψ(q) =
(
X ′Wψ(q)X

)−1
X ′Wψ(q)y, (3)

y = col
1≤d≤D

(
col

1≤j≤nd
(ydj)

)
, X = col

1≤d≤D
( col
1≤j≤nd

(x′dj))
)

and σ̂q = v̂ar1/2(êψ,dj(q)) = madψ,n(êψ,dj(q))/0.6745

is the median absolute deviation (MAD). For this study, we consider the Huber function

ψ(u) = u I(−cψ, cψ)(u) + cψ sgn(u) I{|u|≥cψ}, u ∈ R, cψ > 0. (4)

A commonly adopted value for the tuning constant is cψ = 1.345, which ensures approximately 95%
asymptotic efficiency under the assumption of normally distributed model errors.

For the applications to SAE, the unit-level MQ coefficient of unit j of area d (Chambers and Tzavidis,
2006; Dawber and Chambers, 2019) is

qdj = solution
0<q<1

{
Qq(ydj ;σq, ψ|xdj) = ydj

}
, d = 1, . . . , D, j = 1, . . . , Nd. (5)

The unit-level MQ coefficient qdj is the “most likely” quantile probability of unit j of area d, so ydj =
x′djβψ(qdj), and it can be predicted in the sampled units j ∈ sd:

q̂dj = solution
0<q<1

{
Q̂q(ydj ; σ̂q, ψ|xdj) = ydj

}
, Q̂q(ydj ; σ̂q, ψ|xdj) = x′djβ̂ψ(q). (6)

The unit-level MQ coefficients are determined at the population level. Therefore, if a hierarchical structure
explains part of the variability of the population, units within areas defined by that hierarchy are expected
to have similar unit-level MQ coefficients. The population means and the predicted small area sample
means of the unit-level MQ coefficients –commonly referred to as area-specific MQ coefficients– are

θd =
1

Nd

Nd∑
j=1

qdj and θ̂d =
1

nd

nd∑
j=1

q̂dj . (7)

The two-level MQ model with q = θ̂d is expected to provide the most accurate predictions in area d. They
can be used to predict various area-specific quantities, with population means Y d = 1

Nd

∑Nd
j=1 ydj being a

primary example. Based on a Taylor series expansion, a plug-in predictor of Y d is

Ŷ
mq

d =
1

Nd

{∑
j∈sd

ydj +
∑
j∈rd

x′djβ̂ψ
(
θ̂d
)}
. (8)



The bias of Ŷ
mq

d is B
(
Ŷ
mq

d

)
= E

[
Ŷ
mq

d − Y d
]

and a robust estimator is (Chambers et al., 2014)

B̂φ
(
Ŷ
mq

d

)
= −

(
1− nd

Nd

) σ̂θ̂d
nd

∑
j∈sd

φ
(
ûψ,dj

)
, (9)

where φ is an influence function with area-specific robustness parameter cφ,d ≥ 0. Here, the residuals
and standardized residuals for q = θ̂d are defined as êψ,dj , êψ,dj(θ̂d) = ydj − x′djβ̂ψ

(
θ̂d
)

and ûψ,dj =

σ̂−1

θ̂d
êψ,dj , respectively. In practice, as the influence function φ for bias correction we use the Huber function

given in (4). Accordingly, a robust bias-corrected MQ (BMQ) predictor of Y d is

Ŷ
bmq

d = Ŷ
mq

d − B̂φ
(
Ŷ
mq

d

)
= Ŷ

mq

d +
1

nd

(
1− nd

Nd

) ∑
j∈sd

σ̂θ̂dφ
(
ûψ,dj

)
. (10)

The final term on the right-hand side of (10) serves to mitigate the potential bias of the MQ predictor,
as discussed by Chambers et al. (2014). By appropriately selecting the tuning parameter cφ,d, one can
regulate the bias-variance trade-off inherent in the BMQ predictors and their corresponding mean squared
error (MSE). Indeed, the robustness parameters cφ,d play a crucial role in enhancing the BMQ predictor
over the MQ predictor; however, the selection of their optimal values had remained an open issue until
recently. A common, but subjective, choice is ĉφ,d = 3, d = 1, . . . , D.

To address this optimally, Bugallo et al. (2025) propose a data-driven procedure for selecting predictor-

specific values of cφ,d that minimize the estimated MSE of Ŷ
bmq

d :

ĉφ,d , ĉφ,d(θ̂d) = argmin
cφ,d≥0

msebmqd (cφ,d) = argmin
cφ,d≥0

Ad(cφ,d), d = 1, . . . , D, (11)

where msebmqd (cφ) denotes an estimate of MSE(Ŷ
bmq

d ), such as those proposed by (Chambers et al., 2011,
2014), and Ad(cφ,d) its cφ,d - dependent part. Using any of these methods, it holds that

Ad(cφ,d) =
(

1− nd
Nd

)2( σ̂θ̂d
nd

)2(∑
j∈sd

φ2(ûψ,dj)+
(∑
j∈sd

(φ
(
ûψ,dj

)
− ûψ,dj)

)2)
, d = 1, . . . , D. (12)

Solutions to the minimization problem in (11) are referred to as optimal robustness parameters for bias
correction in MQ linear prediction and are denoted by ĉφ,d, d = 1, . . . , D. Their existence and uniqueness
for each area were established by Bugallo et al. (2025) in the context of temporal MQ models, and this
result naturally extends to classical MQ models.

3. CONSISTENCY OF AREA-SPECIFIC M-QUANTILE COEFFICIENTS

The area-specific MQ coefficients θ̂d, for d = 1, . . . , D, are treated as random variables and interpreted
as pseudo-random effects that characterize area-level patterns. The asymptotic theory is developed under
the following assumptions, which hold as n→∞ for d = 1, . . . , D:

(N1) ∃0 < ad < 1 :

D∑
d=1

ad = 1 and
nd
n
→ ad; (N2) ∃0 < fd < 1 : fd → 1 and

nd
Nd
→ fd. (13)

Theorem. Let d = 1, . . . , D. Under assumptions (A1)–(A8) in Bianchi and Salvati (2015) and (N1)–(N2)
in (13), the consistency of θ̂d holds; that is, |θ̂d − θd| = op(1) as n→∞.

The empirical consistency of θ̂d was assessed via model-based simulations in Bugallo et al. (2025).

4. RESIDUAL ANALYSIS AND BOOTSTRAP INFERENCE

We analyze the residual behavior in two-level MQ models to better understand their role in small area

linear prediction. From (3), it holds that êψ,dj =
[
(In×n −H(θ̂d))y

]
dj

, where

H(θ̂d) = X
(
X′Wψ(θ̂d)X

)−1

X′Wψ(θ̂d) (14)

is the homologue of the projection matrix in mixed models and exhibits common properties. Although
H(θ̂d) is not symmetric, it is idempotent and its diagonal elements are interpreted as the leverage of the



j-th unit in area d in the fitting process of the two-level MQ model for q = θ̂d. The diagonal elements also
allow for the detection of influential observations.

The distribution of the target variables in MQ models has recently been studied by Bianchi et al. (2018).

Following these authors, we approximate the distribution of the residuals as êψ(θ̂d)∼
(
In×n −H(θ̂d)

)′
ξ,

where ξ = col
1≤d≤D

(
col

1≤j≤nd
(ξdj)

)
and ξgj∼GALI(x′gjβ̂ψ(θ̂d), σ̂θ̂d , θ̂d). GALI denotes the Generalized Asym-

metric Least Informative distribution with location µθ̂d = x′gjβ̂ψ(θ̂d), scale σ̂θ̂d and probability q = θ̂d.
The demand for a working likelihood in MQ models for inference purposes motivated the definition of it,
which generalizes the asymmetric Laplace distribution, often linked to quantile regression.

The distribution of the optimal robustness parameters ĉφ,d is estimated via bootstrap using three
approaches: a non-parametric (NP) algorithm, a parametric (AP) method based on an approximation to
the residuals’ distribution and a Näıve (NA) alternative relying on the distribution of the model errors.
Let b = 1, . . . , B denote the bootstrap replicates.

(a1) Algorithm NP. Generate nd values û
∗(b)
ψ,dj by simple random sampling with replacement from the

set of standardized residuals {ûψ,d1, . . . , ûψ,dnd}.

(a2) Algorithm AP. Generate nd values ê
∗(b)
ψ,dj =

[ (
In×n −H(θ̂d)

)′
ξ∗(b)

]
dj

, where it holds that

ξ
∗(b)
gk ∼GALI(x′gkβ̂ψ(θ̂d), σ̂θ̂d , θ̂d). Define û

∗(b)
ψ,dj =

(
σ̂
∗(b)
θ̂d

)−1

ê
∗(b)
ψ,dj , σ̂

∗(b)
θ̂d

= madψ,n(ê
∗(b)
ψ,dj)/0.6745.

(a3) Algorithm NA. Generate nd i.i.d. values û
∗(b)
ψ,dj∼GALI(0, 1, θ̂d).

Algorithm NP is based on the empirical distribution of the standardized residuals. It should therefore
be preferable to Algorithm NA, but in SAE the sample sizes of the areas are expected to be quite small.
Hence, the empirical distribution of ûψ,dj would be an inaccurate approximation of the true distribution
of ûψ,dj because it would be approximated with too little data.

Algorithm AP is based on an approximation of the distribution of the residuals. It is expected to be
the preferable method with small and moderate sample sizes and is considered an intermediate option
between Algorithm NP and NA. Algorithm NA is the most conservative approach. For each area, the
bootstrap distribution of ĉφ,d, according to Algorithm NA, does not depend on σ̂θ̂d or Nd. In fact, it does

not even depend on the distribution of the target variables, but only on θ̂d and nd. In practice, Algorithm
NA ignores the randomness derived from the estimation of βψ(θd) and the prediction of θd. However, it

can be used to develop statistical methods conditioned on θ̂d and to present empirical results in Section
6 without specifying the model that generates the data. If one were to use the Näıve approach in mixed
models, it would consist of approximating the distribution of the residuals by that of the model errors.

In this research, GALI random variables were generated in R using custom code.

Let d = 1, . . . , D. The distribution of ĉφ,d can be approximated via bootstrap as follows:

1. Repeat B times (b = 1, . . . , B):

(a) Generate standardized residuals using the NP, AP or NA algorithms.

(b) Based on the bootstrap sample {û∗(b)ψ,dj : j = 1, . . . , nd}, define

A
∗(b)
d (cφ,d) =

(
1− nd

Nd

)2( σ̂θ̂d
nd

)2(∑
j∈sd

φ2(û∗(b)ψ,dj

)
+
(∑
j∈sd

(φ
(
û
∗(b)
ψ,dj

)
− û∗(b)ψ,dj)

)2)
. (15)

(c) Solve the minimization problem in the bootstrap world: ĉ
∗(b)
φ,d = argmin

cφ,d≥0
A
∗(b)
d (cφ,d).

2. For b = 1, . . . , B, sort the values ĉ
∗(b)
φ,d from smallest to largest to estimate the distribution of ĉφ,d

via parametric bootstrap. They are ĉ∗φ,d (1) ≤ . . . ≤ ĉ∗φ,d (B).

5. A NEW TEST TO DETECT ATYPICAL AREAS

The main contribution of this research is the detection of atypical areas based on the optimal robustness
parameters. For two-level MQ models, we propose to check whether the area-specific MQ coefficients θd
are equal to 0.5 in order to identify the atypical condition of an area d. Our idea comes from the deviation
of the mean of the standardized residuals from the origin, which becomes more pronounced as θd moves



away from 0.5 and translates into a higher bias correction. However, this cannot be done directly because
the distribution of qdj , d = 1, . . . , D, j = 1, . . . , Nd, is unknown, and so is that of the random variables θd.

To overcome this challenge, we will perform inference conditional on θd, so that it can be treated as a
parameter 0 < θd < 1. We formulate the test

H0 : θd = 0.5 vs H1 : θd 6= 0.5, d = 1, . . . , D. (16)

The critical point is ĉ∗φ,d(b(1−α)Bc)(0.5) and the rejection region is
[
ĉ∗φ,d(b(1−α)Bc)(0.5),∞

)
, for 0 < α < 1.

To calculate ĉ∗φ,d(b(1−α)Bc)(0.5), one may use the NP, AP or NA algorithms. Areas with unusually large
bias corrections in the BMQ predictor are deemed atypical.

At this regard, the results of test (16) should be interpreted solely in terms of the contrast reflecting
the atypical nature of the area d to which they apply, as this is a procedure of conditional inference
on θd. More specifically, the identical distribution of any subcollection of the set of random variables
{θd : d = 1, . . . , D} is not intended to be tested.

6. SOME OUTSTANDING EMPIRICAL RESULTS

First, the model that generates the data is not specified, only nd and θd, so the outputs are necessarily
relative to Algorithm NA in Section 4, with B = 2000 bootstrap replicates. Figure 1 plots the kernel
density estimation (KDE) of the bootstrap distribution of ĉφ,d for θd ∈ {0.5, 0.75, 0.95} and nd = 10, the
bootstrap median (dashed blue line) and the quantile q0.95 (red dots).
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ĉφd

D
en

si
ty

Figure 1: KDE of the bootstrap distribution of ĉφ,d for θd ∈ {0.5, 0.75, 0.95}, nd = 10 andB = 2000.

The density of ĉφ,d for θd = 0.5 is unimodal and concentrates around the origin, with a second mode
appearing and overtaking the first mode as θd moves away from 0.5. In fact, as θd increases, the distribution
shifts to the right even though it maintains an increasingly less appreciable mode around the origin.
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Figure 2: Boxplots of ĉφ,d for θd ∈ {0.5, 0.75, 0.95} and nd ∈ {5, 10, 15, 25, 100, 1000} calculated by
parametric bootstrap with B = 2000.

It follows that the bias correction is more necessary for larger (and smaller) values of θd. Actually, the
relationship between θd and ĉφ,d is symmetric around θd = 0.5, i.e. smaller values of θd also correspond to



atypical areas. Looking at the vertical scale of the three plots in Figure 1, the data are highly concentrated
around the origin for θd = 0.5 and become more dispersed as θd increases. The evidence against choosing
ĉφ,d = 3 by default (Chambers et al., 2014, 2011) is another notable finding. Figure 1 reveals that the
selection of ĉφ,d = 3 is not advisable for non-atypical areas, where θd is close to 0.5, and may even result
in an exaggerated bias correction for moderately high (low) values of θd, such as θd = 0.75 (and θd = 0.25)

We would also like to highlight the relationship between ĉφ,d and nd. The boxplots in Figure 2 show
how the distribution of ĉφ,d moves to the right as the sample size increases. This shift is minimal for
θd = 0.5 and very noticeable for more distant area-specific MQ coefficients, such as θd = 0.95. Again, the
selection of ĉφ,d = 3 by default is ruled out as a valid option due to its unquestionable dependence on nd.

Moving on to other topic, the performance in model-based simulations of the new test to detect atypical
areas in Section 5 is studied. The simulation design is based on Chambers et al. (2014). Random area and
unit-level effects are generated under three scenarios:

[0, 0] – No outliers: ud ∼ N (0, 3) and edj ∼ N (0, 6).

[e, 0] – Unit-level outliers: edj ∼ δN (0, 6) + (1− δ)N (20, 150), where δ is a Bernoulli variable with
P(δ = 1) = 0.97.

[e, u] – Outliers in both area and unit-level effects: the unit-level errors follow the same distribution
as in the previous case and ud ∼ N (9,

√
20) for areas 37 ≤ d ≤ 40.

Each simulation scenario was run with S = 500 iterations. The target variables are defined as

y
(s)
dj = 100 + 5xdj + u

(s)
d + e

(s)
dj , s = 1, . . . , S, j ∈ Ud, d = 1, . . . , D,

where u
(s)
d and e

(s)
dj are generated depending on the specific scenario and xdj v LogN(1, 0.5).

The simulation results of the area-level outlier detection test using Algorithm AP (the best performer)
are presented in Table 1. The proposed method reliably identifies areas as anomalous when they are truly
outliers (see column [e, u]), and effectively detects the majority of atypical cases.

Scenario [0, 0] [e, 0] [e, u]

1 ≤ d ≤ 40 0.008 0.047

1 ≤ d ≤ 36 0.048

37 ≤ d ≤ 40 0.845

Table 1: Proportion of outliers detected by Algo-
rithm AP in the atypical area detection test at
5% in model-based simulations.

7. APPLICATION TO REAL DATA

In this section, we apply the methodology to analyze income trends in the D = 8 provinces of Andalućıa
(southern Spain) using data from the 2022 Spanish Living Conditions Survey (SLCS) and auxiliary variables
from the 2021 Census provided by the Spanish National Institute of Statistics. We have chosen only
Andalusian provinces to enhance the graphical interpretability of the results and for space considerations.
Sampling fractions are all below 0.11%, underscoring the small-area context. The response variable is the
equivalized disposable income per person and unit of consumption, in thousands of euros. Its correlation
with the elevation factors is -0.090, suggesting a non-informative sampling design. Since the analysis is
based on unit-level data, the range of available auxiliary variables is limited to only two: sex and age4, a
categorical variable divided into four groups: 0–25, 26–45, 46–64 and 65+.

Figure 3 plots the KDE of the bootstrap distribution of the optimal robustness parameters ĉφ,d by
province, sorted by |θ̂d − 0.5|. Bootstrap estimation of the distribution of ĉφ,d has been carried out using
Algorithm AP of Section 4 with B = 2000 replicates. All estimated densities in Figure 3 are unimodal,
except for minor perturbations, with the mode shifting to the right as |θ̂d − 0.5| increases. Consequently,
higher optimal robustness parameters are expected. Higher values of ĉφ,d indicate greater atypicality in
the areas, as shown in Figure 4, where the probability of atypicality is plotted against the confidence level
1 − α, and calculated as 1

B

∑B
b=1 I

(
ĉ
∗(b)
φ,d > ĉ∗φ,d(b(1−α)Bc)(0.5)

)
, where ĉ

∗(b)
φ,d and ĉ∗φ,d(b(1−α)Bc)(0.5) have

been calculated by bootstrap with B = 2000.

The analysis of provincial atypicality reveals deviations from the overall pattern of the target variable.
In this case, Huelva, Almeŕıa and Jaén –identified as the most atypical provinces in Figure 4– stand out due
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Figure 3: KDE of the bootstrap distribution of the optimal robustness parameters ĉφ,d by province.
The median is a dashed blue line, while the 95% quantile is shown with red dots.
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Figure 4: Probability of atypicality for the provinces as a function of the confidence level 1− α.

to their significantly lower average equivalized disposable incomes. Jaén, in particular, reports the lowest
average not only within Andalućıa but also across all the country (Spain), while Huelva and Almeŕıa also
rank among the poorest. As outliers, these provinces face distinct economic challenges and often diverge
from broader national trends.

We now turn to the analysis of the individuals. Section 4 lists properties of the projection matrix in
MQ models (around equation (14)), analogous to those of mixed models. One of them is the interpretation
of the diagonal elements as leverages in model fitting. An observation j of area d is said to be influential
if and only if hddjj(q) > 2p̃/n, d = 1, . . . , D, j = 1, . . . , nd, 0 < q < 1, where p̃ is the number of
linearly independent covariables, so p̃ = 5 in the practical case: βψ1 , sex1 : age41; βψ2 , sex2; βψ3 , age42;
βψ4 , age43; and βψ5 , age44. According to this criterion, we do not report influential observations for the
model fitting with the probabilities θ̂d, d = 1, . . . , D. The maximum of the leverages has been 0.0014 for



d = 5 and 2p̃/n = 0.0016. Figure 5 (a) displays the leverage values by age and sex; all are below the
threshold. Figure 5 (b) shows a clear negative trend between leverages and standardized residuals.
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(a) Leverage by age group and sex. Red line: threshold 2p̃/n = 0.0016.
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(b) Leverage vs. standardized residuals with local polynomial fit.

Figure 5: Results for the fitting of the D = 8 two-level MQ regression models.

Finally, Figure 6 (left) maps the BMQ predictions for the average equivalized disposable income in 2022
for the D = 8 provinces of Andalućıa. This allows for a graphical representation of the differences between
provinces. Huelva, Almeŕıa and Jaén have lower average incomes, and the opposite is true for Sevilla. The
relative root mean squared error (RRMSE) estimates have been computed using the MSE estimator of the
BMQ predictor proposed in Chambers et al. (2014) as the numerator and the BMQ predictor itself as the
denominator. They are mapped in Figure 6 (right). In terms of RRMSE, the results are really good for a
SAE problem, with values below 6% in all provinces in 2022. This performance stands in sharp contrast to
that of the direct estimators currently used by the Spanish National Institute of Statistics, which typically
exhibit substantially higher RRMSE values.
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Figure 6: Estimates of average equivalized disposable income (left) and RRMSE estimates (right)
in 2022 by province in Andalućıa. Results for the BMQ predictor.

8. CONCLUSIONS

This research covers the analysis of the residuals in two-level MQ models and calculates their dis-
tribution, which are eventually approximated for practical use. Based on these distributions, which are
unit-level dependent, both parametric and non-parametric bootstrap methods are proposed to estimate
the distribution of the optimal robustness parameters. The idea of the latter is not only to understand
their role in the bias correction, but also to alleviate the problem of subjective –but commonly used–
selection of 3 (Chambers et al., 2014; Dawber and Chambers, 2019) and to analyse their relationship with
the atypical condition of an area.

While robust methods are increasingly applied in SAE (Chambers et al., 2011; Chambers and Tzavidis,
2006), little attention has been paid to detecting atypical areas (Bugallo et al., 2025). We address this gap
by proposing a bootstrap-based test to identify outliers, aiming to balance reliability and parsimony in
p-value-based detection. This test is grounded in the behavior of the residuals and standardized residuals.
Simulation studies support the validity of our approach: the test effectively detects clear outliers, though its
sensitivity to moderately atypical areas is limited –highlighting the nuanced nature of robustness in SAE.
The application to the SLCS2022 data demonstrates the practical value of the research. The bootstrap
distribution of the optimal robustness parameters offers a natural way to rank atypicality and assess
deviations from regional economic patterns.

Future studies should investigate the robustness properties of predictors derived from MQ models and
examine how the selection of the optimal robustness parameters influences their performance. For instance,
assessing robustness in the presence of outliers or heavily skewed distributions remains an open question.
Additionally, the insights derived from the optimal selection of the robustness parameters offer valuable
guidance improving future MQ applications.
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